
Probability in Argumentation

Nir Oren
n.oren@abdn.ac.uk

University of Aberdeen

5 Sep 2014

Nir Oren (Univ. Aberdeen) Probability in Argumentation 5 Sep 2014 1 / 72



Overview

Why probabilities?
Approaches
Applications
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Argumentation

Argumentation formalisms facilitate reasoning in the presence of
conflicting information.

Alice has black hair.
Alice has red hair.
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Argumentation

Argumentation formalisms facilitate reasoning in the presence of
conflicting information.

Bob says that Alice has black hair.
Robert says that Alice has red hair.
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Argumentation

Argumentation formalisms facilitate reasoning in the presence of
conflicting information.

Bob says that Alice has black hair.
Robert says that Alice has red hair.
Charlie says he’s pretty sure that Bob hasn’t met Alice, but is almost
certain that Robert has met her.
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We can use preferences to obtain extensions.
But these do not capture the "pretty sure" and "almost" —
extensions are not different.
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Uncertainty

Uncertainty is a common facet in everyday life, and is related to,
but independent from conflicting information.
We need to be able to reason about

Uncertainty about arguments (i.e. there is a 0.7 likelihood of this set
of facts holding).
Arguments about uncertainty (the likelihood of this fact is 0.6
because of ...).

There are still many open questions in both of these areas.
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Probabilistic Argumentation Frameworks (PrAFs)

PrAFs (Li, TAFA-11) are a recent, very popular approach to
modelling uncertainty in abstract argumentation.
PrAFs extend a standard DAF with probabilistic concepts.

〈A,D〉

Nir Oren (Univ. Aberdeen) Probability in Argumentation 5 Sep 2014 5 / 72



Probabilistic Argumentation Frameworks (PrAFs)

PrAFs (Li, TAFA-11) are a recent, very popular approach to
modelling uncertainty in abstract argumentation.
PrAFs extend a standard DAF with probabilistic concepts.

〈A,D,PA,PD〉

PA,PD encodes the likelihood of an argument or attack.
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Interpreting PrAFs

A
0.8

B
0.6

We can interpret PrAFs via a frequentist approach to probability:
PA(A) = 0.8 means that in 8 out of 10 possible worlds (or
Argument Frameworks), A exists.

A B A B
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Likelihoods of Argument Frameworks

A
0.8

B
0.6

P(∅, ∅) =?

P({A}, ∅) =?

P({B}, ∅) =?

P({A,B}, {(A,B), (B,A)}) =?
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Likelihoods of Argument Frameworks

A
0.8

B
0.6

P(∅, ∅) = 0.08
P({A}, ∅) = 0.32
P({B}, ∅) = 0.12
P({A,B}, {(A,B), (B,A)}) = 0.48
Each of these DAFs are induced from the original PrAF.

0.480.120.320.08

A B A B
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Semantics

Unlike traditional frameworks, extensions are probabilistic,
indicating the likelihood that a set of arguments appears within
some extension.
This probability is computed as the sum of probabilities of the AFs
where the argument appears in the Dung extension.

P(∅, ∅) = 0.08 P({A}, ∅) = 0.32

P({B}, ∅) = 0.12 P({A,B}, {(A,B), (B,A)}) = 0.48

P({A} ∈ Grounded) = 0.32
P({A} ∈ Preferred(credulous) = 0.8
P({A} ∈ Preferred(skeptical) = 0.32
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Computing Probabilistic Justification

Require: A PrAF 〈A,D,PA,PD〉
Require: A set of arguments T ⊆ A
Require: X , a semantics

1: p ← 0
2: for all A′ ⊆ A,D′ ⊆ D (a,b) ∈ D′, only if a,b ∈ A′ do
3: if T is in the X extension of (A′,D′) then
4: p ← p +

∏
a∈A′ PA(a)

∏
a∈A\A′(1−

PA(a))
∏

d∈D′ PD(d)
∏

d inD\D′(1− PD(d))
5: end if
6: end for
7: return p
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Computing Probabilistic Justification

The naive algorithm considers all combinations of arguments and
attacks. Exponential computational complexity.
Can we do better?

Special cases (Fazzinga et al., IJCAI-13).
Approximate solutions
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Admissible semantics

An admissible set Ad is
Conflict free (i.e. there is no a,b ∈ Ad s.t. (a,b) ∈ D
contains arguments acceptable w.r.t Ad (i.e. if b attacks a ∈ Ad
then there is a c ∈ Ad which attacks b).

So what?
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Admissible semantics

An admissible set Ad is
Conflict free (i.e. there is no a,b ∈ Ad s.t. (a,b) ∈ D
contains arguments acceptable w.r.t Ad (i.e. if b attacks a ∈ Ad
then there is a c ∈ Ad which attacks b).

The probability that a set S ⊆ A is admissible is the product of
the likelihood that S appears;
the likelihood that it is conflict free (i.e. that no attacks between its
elements appear);
the likelihood that

No argument that might attack an element of S exists; or
If such an element does exist, it does not attack an element of S; or
If it does attack an element of S, an attack agains the attacker exist
from S.
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Admissible Semantics
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Stable Semantics

A similar line of reasoning can be used to the stable semantics.
The main change is that arguments outside the stable set must be
attacked.
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Approximating Solutions

Other semantics are computationally hard (FP#P − complete).
To address this we utilise Monte-Carlo sampling.
Algorithm overview:

We randomly generate a DAF based on the underlying probability
distribution of the PrAF
Compute the extension of the generated DAF and record if the set
we’re testing (X ) for is within the extension.
Repeat the above n times, assume that the set was within the
extension m times.
P ′

PrAF (X ) = m/n.

As n→∞, PPrAF (X )− P ′PrAF (X )→ 0
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When to stop?

If we’re willing to specify some confidence interval ε, we can stop
when we’re (nearly) sure that our solution lies within this
confidence interval, i.e. when |PPrAF (X )− P ′PrAF (X )| < ε

From basic statistics, if z1−α/2 to 1.96)

n >
p′(1− p′)

ε2
(1.96)2

But, when we run the first trial, p′ = 0 or p′ = 1.
We therefore use the Agresti-Coull method which perturbs the
true number of trials and successes slightly to obtain

n >
4p′(1− p′)

ε2
− 4

for a tweaked version of p′.
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When to stop?
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Evaluation
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Observations

Monte-Carlo evaluation time increases linearly (due to the longer
time taken to evaluate the extension).
As the permitted error shrinks, the standard deviation increases.
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Where are we?

Given a PrAF and a set of arguments, we can determine the
probability that these arguments appear in an extension.
We have assumed that the likelihood of arguments appearing in
the induced DAF is independent of other arguments appearing
(and that defeats are conditional only on the source and target
arguments appearing).
This is not a realistic assumption — arguments are (usually)
composed of sub arguments; the parent argument can only
appear if the child argument is present.
Given that a is a parent of b, a can only be present in an extension
if b is present.
In other words, we need to encode P(a|b).
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Removing the Independence Assumption

A sub-argument supports its parent.
A bipolar argumentation framework is needed to encode support.
We extend Evidential Argument Frameworks (EAFs) into PrEAFs.
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EAFs, Features

Support.
Collective attack and support.
A special argument, η whose support is, in a sense, required for
further support or attack to be successful.
Semantics are very similar to those of Dung.
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Evidential Argument Frameworks (EAFs)

〈Args,Ra,Re〉, Ra,Re : 2Args\∅ × Args
η ∈ Args such that (_, η) /∈ Ra,Re and ({. . . , η},_) /∈ Ra.
A set S provides evidential support to an argument a iff a = η or
there is a non-empty S′ ⊆ S s.t. (S′,a) ∈ Re and ∀x ∈ S′, x has
evidential support form S\{a}.
S carries out an evidence supported attack on a iff (S′,a) ∈ Ra,
for S′ ⊆ S and any s ∈ S′ has evidential support from S.
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Other concepts

An argument a is acceptable w.r.t S iff
it is e-supported by S; and
if T carries out a minimal e-supported attack against a, S carries
out an e-supported attack against T .

Self-supporting — all arguments in S are e-supported by S.
conflict free — no a ∈ S,B ⊆ S s.t. (B,a) ∈ Ra.
admissible — conflict free and acceptable.
preferred — maximal w.r.t set inclusion admissible.
. . . .
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EAFs
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EAFs, η

For an argument to be considered for inclusion within an
extension, or to successfully attack some other argument there
must be a chain of support from η to the argument.
η

eliminates the possibility of self supporting cycles.
Helps ensure consistency of the system.
Allows for a simple representation of argument schemes?

η → a can model a strict or default fact within the system.
EAFs are, in a sense, underspecified structured argument
frameworks.
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PrEAFs

PrEAF = 〈A,Rd ,Rs,Ps〉

Ps : Rs → (0,1] captures the probability of support.
We assume that if SRsa, then it is not the case that S′ ⊆ S such
that S′Rsa.
We also assume no support loops.
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PrEAFs
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Inducible EAF

An EAF I = 〈AI ,RI
d ,R

I
s〉 can be induced from a PrEAF

P = 〈A,Rd ,Rs,Ps〉 iff all of the following hold.
AI ⊆ A and η ∈ AI

RI
s ⊆ Rs

RI
d = Rd ∩ (AI × AI)
∀SRsa ∈ Rs s.t. S ⊆ AI and Ps(SRsa) = 1, SRsa ∈ RI

s
∀a ∈ A\{η} s.t. ∃SRsa ∈ RI

s, a ∈ AI

PPrEAF (X ) =
∑

EAF∈I(PrEAF )

P I
PrEAF (EAF )ξS(X ,EAF )

We need a way to compute P I
PrEAF (EAF ).
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Computing Inducible EAF Probabilities

We begin by considering whether an induced EAF is valid, i.e.,
can be induced from some given PrEAF.
A naïve approach will consider every subset of 2A. If this set of
arguments does not include any unsupported arguments, then it is
a valid inducible EAF.
Given a valid inducible EAF, its probability of being induced is the
joint probability that

Its arguments appear; and
Those arguments not in the EAF do not appear.

These depend on the probabilities that an argument’s supporting
arguments are also present, all the way up to η.
We can therefore identify inducible EAFs by beginning at η, and
identifying which EAFs can be induced, repeating the process for
these induced EAFs until no more EAFs can be induced.
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Inducing EAFs

There’s a small complication when creating this tree — due to
arguments supporting multiple other arguments, there may be two
ways of inducing the same EAF. Our process must prevent
double-counting of EAFs.
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Induced EAF probabilities

The probability that an EAF 〈AI ,RI
s,RI

d〉 is induced is the
probability that its arguments do appear, and arguments not within
it do not appear (given the arguments that are within it).

P(AI)× P(A\AI |AI)

P I
PrEAF ({η,a,d}) = P({η,a,d})× P({b, c}|{η,a,d})
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P(A\AI|AI)

Consider the probability that all arguments except those in AI are
not present within the induced EAF (given that AI is present).
We have two possible situations

An argument not in AI supports an argument in AI .
An argument in AI supports an argument not in AI .

So we must consider the support links

{rs|rs ∈ Rs\RI
s where rs = (S,a) and S ⊆ AI}

P(A\AI |AI) is equivalent to the likelihood that each of these
support links is not induced, i.e.

P(A\AI |AI) =
∏

{rs|rs∈Rs\RI
s and Src(rs)⊆AI}

(1− Ps(rs))
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P(AI)

We can compute P(AI) recursively, based on the probability of its
parent EAF being induced.

P(AI) =

{
1 if I = 〈{η}, ∅, ∅〉
P(AF )× P((AI\AF )|AF ) otherwise

We know P(AF ) — the probability of the parent EAF being
induced — by using our tree expansion.
P((AI\AF )|AF ) is the conditional probability that an argument is
present in the induced EAF but not the parent, given the
arguments already present in the parent EAF.
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P(AI\AF |AF )

If we have only one possible support link from the parent EAF to
all introduced arguments, then the probability of these new
arguments appearing is simply the product of all support link
likelihoods.

P(AI\AF |AF ) =
∏

{a|a∈AI\AF and Tgt(rs)=a}

Ps(rs)

If multiple ways exist of supporting a newly appearing argument,
then we must consider the likelihood that at least one of these
exist.

P(a|AF ) = 1−
∏

rs∈Sups(a,I,AF ,AF ′ )

(1− Ps(rs))
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P(AI\AF |AF )

Extending this to all arguments, we obtain

P(AI\AF |AF ) =
∏

a∈AI\AF

1−

 ∏
rs∈Sups(a,I,AF ,AF ′)

(1− Ps (rs))




Here, Sups function identifies the newly appearing support links
for an argument a given an EAF, its parent and grandparent.
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Where are we?

We can now expand an induced EAF tree, starting at an EAF
containing only the argument η, and compute the probability of a
specific node being induced in this tree based on its parent’s
probability of being induced.
By computing the extension of this induced EAF, and summing
over all other EAFs, we can compute the likelihood of a set of
arguments appearing within an extension.
Complexity is dependent on the number of possible induced EAFs.
If everything is supported by η (i.e., reduced to a PrAF), we have
exponential complexity.
Termination of our algorithms are guaranteed.

Nir Oren (Univ. Aberdeen) Probability in Argumentation 5 Sep 2014 36 / 72



What do probabilities mean?

1 Likelihood of an argument being considered justified (Hunter,
COMMA-12)

2 Likelihood that an argument is known by an agent (Li et al,
TAFA-11,COMMA-12,ArgMAS-13)

3 Likelihood that an agent believes an argument (Thimm, ECAI-12,
ECAI-14, Hunter, IJAR-13, ArXiv-14)

Structural uncertainty - uncertainty about the structure of the
argument graph (1 and 2).
Epistemic uncertainty - uncertainty about agent beliefs (3).
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Epistemic Extensions (taken from Hunter, ArXIV-14)

A probability function maps sets of arguments to a probability
value P : 2A → [0,1], s.t.

∑′
A ⊆ AP(A) = 1

P(a) =
∑

a∈E⊆A

P(E)

Arguments are labelled based on the probability associated with
them: a is in if (P(a) > 0.5), out if P(a) < 0.5 and undec
otherwise.
What constraints can be placed on the probability function?
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Some Constraints

COH For every a,b ∈ A, if a→ b, then P(a) ≤ 1− P(b)
SFOU If P(a) ≥ 0.5 for every a ∈ A which is not attacked.
FOU If P(a) = 1 for every a ∈ A which is not attacked.
SOPT If P(a) ≥ 1−∑b s.t. b→a P(b) whenever an attack

against a exists.
OPT If P(a) ≥ 1−∑b s.t. b→a P(b).
JUS If COH and OPT
TER If P(a) ∈ {0,0.5,1} for any a ∈ A
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Properties

PJUS ⊂ PCOH ⊂ P
POPT = PSOPT ∩ PFOU

PFOU ⊂ PSFOU

∅ ⊂ PTER ⊂ P
If a labelling is admissible, then P ∈ PSFOU

A complete probability function is one s.t. P ∈ PCOH ∩PFOU ∩PTER
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Classical Extensions

Given a complete probability function, the following association
between restrictions and classical extensions exists.

No restriction Complete
No a s.t. P(a) = 0.5 Stable
Maximal arguments s.t. P(a) = 1 Preferred
Maximal arguments s.t. P(a) = 0 Preferred
Maximal arguments s.t. P(a) = 0.5 Grounded
Minimal arguments s.t. P(a) = 1 Grounded
Minimal arguments s.t. P(a) = 0 Grounded
Minimal arguments s.t. P(a) = 0.5 Stable
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Non-standard Extensions

Additional properties can be introduced.
RAT If a→ b then P(a) > 0.5 implies P(b) ≤ 0.5
NEU P(a)=0.5 for all a ∈ A
MAX P(a)=1 for all a ∈ A
MIN P(a)=0 for all a ∈ A
INV If a→ b then P(a) = 1− P(b)
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Non-standard Extensions
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More results

For an admissible labelling, there is an associated RAT probability
function, whose in labellings are conflict-free.
If an AF contains an odd cycle, then any INV probability function is
neutral.
All attackers of A have the same probability value if an INV
function is used.
If attacks exist between arguments, no function exists which
satisfies RAT and MAX.

Nir Oren (Univ. Aberdeen) Probability in Argumentation 5 Sep 2014 44 / 72



So What?

Can we use these properties to assign probabilities to arguments?
Assume a partial function π : A→ [0,1]

What are the “best” probabilities to assign to arguments not in the
domain of π?
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The Idea

A
1

B
?
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The Idea

A
1

B
0
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The Idea

A
0.7

B
?
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The Idea

A
0.7

B
0.3
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The Idea

What if we want COH (If a→ b then P(a) ≤ 1− P(b))?

A
?

B
?

C
0.4
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The Idea

What if we want COH (If a→ b then P(a) ≤ 1− P(b))?

A
0.6

B
0.4

C
0.4
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The Idea

What if we want COH (If a→ b then P(a) ≤ 1− P(b))?

A
0.5

B
0.5

C
0.4

Multiple probability functions can satisfy the coherence here.
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Selecting Probability Functions

Maximise entropy (−∑E⊆Arg P(E)logP(E)).
This requires that the sets be

convex ( if x1, x2 ∈ X then δx1 + (1− δ)x2 ∈ X for δ ∈ [0,1]).
closed (for any converging sequence x1, x2, . . . where xi ∈ X ,
limi→∞xi ∈ X )

All sets satisfying properties (except for PRAT ) are convex and
closed.
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PRAT

Consider a→ b
P1(a) = 0.5, P1(b) = 0.4
P2(a) = 0.4, P2(b) = 0.8
What convex combination is not in PRAT (RAT: If a→ b then
P(a) = 1− P(b))?

For P = 0.5P1 + 0.5P2 we have P(a) = 0.7,P(b) = 0.6
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Open Questions

What should one do if the coherence condition is not satisfied
(e.g. P(b)=0.7, P(c)=0.6)?
One selects probabilities "as close as possible" to ones that meet
the condition, or perhaps selects probability functions that meet
the condition "as close as possible" to the original assignment.
How does one define "as close as possible"?
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Applications

Reasoning about uncertain knowledge
Persuasion
Opponent Modelling
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The Problem

The wealthy should pay more tax.
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The Problem
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The Problem

What should he say to be convincing?
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The Problem

Why?
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Problem Abstraction

The speaker would like to see some action pursued.
Using a variant of Atkinson’s scheme for practical reasoning
(without CQ101), we can identify attacks between the speaker’s
universe of possible arguments.

p↑w↓w

=t↓j↓e

b↑tb↑jb↑e

↑ e

CQ4 CQ4 CQ4

CQ9 CQ11

↑ T

Separate epistemic and practical critical questions; the former are
resolved outside our framework through an appeal to truth.

1Which prevents attacks between identical actions
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Problem Abstraction

We model the system as a VAF 〈X ,A, ν, η〉
Knowledge of individual listener (audience) α: xα ⊆ X
Value ordering of α: vi �α vj
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Problem Abstraction

The speaker is aware of all arguments in the VAF.
They can introduce a subset of them, which are added to all
listener’s knowledge bases.
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Problem Abstraction

Listeners compute the extension of their private knowledge base
to identify a most preferred action.
Social choice function aggregates individual preferred actions to
global choice.
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What should be said? (I)

If there are
1 No attacks between practical arguments for the same action (no

CQ10);
2 symmetric attacks among pairs of practical arguments for distinct

actions; and
3 No attacks between practical and epistemic arguments (vice-versa

is ok).
Then the speaker should

advance all practical arguments for the goal action; and
all epistemic arguments which do not directly/indirectly attack the
advanced practical arguments.
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Why?

We relax the assumption of agreement on the value set (CQ16).
We introduce a threshold value partition Tα : 2ν → {+,−}
Normally

1 ∀v , v ∈ 2ν\∅,Tα(v) = +. All values should be acted on.
2 If Tα({vi}) = + then for any V ⊃ {vi}, Tα(V ) = +. Accruals of

values should be acted on.
3 ∀v1, v2 ∈ ν, if v1 �α v2 and Tα(v2) = + then Tαv1 = +. More

preferred values than some minimally preferred value should be
acted on.

If these are not satisfied, then a threshold value partition is
degenerate.
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Dealing with degeneracy

In the presence of degeneracy, an exhaustive evaluation of the
effects of the introduction of a set of arguments is needed.
We utilise a probabilistic model of listeners through PVAFs, an
extension of PrAFs.

PX : L× X → [0,1] likelihood of individual i ∈ L knowing an
argument.
PS : L× S → [0,1] likelihood of individual i ∈ L having some
preference ordering.
PT : L× S × T likelihood of individual i ∈ L being audience α ∈ S
and having some threshold preference ordering.
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Modelling the listeners

PVAF (l,D) =
∏

x∈X PX (l, x)
∏

x∈X ′\X (1− PX (l, x)) (1)

Pext(l,Y ) =
∑
α∈PS(l)

∑
i∈IV PVAF (l, i)PS(l, α)extension(Y , i, α) (2)

Pexec(l, a) =
∑

t∈T

∑
e∈E Pext(l, e)PT (l, t |s) s.t. a ∈ e and Tl(a) = + (3)

Pfinal(L, a) =
∑

l∈2L VF (l)
∏

li∈l Pexec(li , a)
∏

lj /∈l 1− Pexec(lj , a) (4)

Pfinal(L,a) computes the likelihood of an action being selected by
the entire group of listeners.
The introduction of arguments X ′ by the speaker yields a new
PVAF for which P ′X (l , x) = 1 if x ∈ X ′ and PX (l , x) otherwise.
Exponential complexity in the number of arguments.
Instead, we can utilise Monte-Carlo sampling to obtain
approximate solutions quickly.
However, considering all possible argument combinations is still
impractical.
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Open Issues

Intelligent possible argument search, e.g. through genetic
algorithm search.
How should CQ10, CQ16 be dealt with?
Extend model to dialogue.
More complex opponent modelling.

Nir Oren (Univ. Aberdeen) Probability in Argumentation 5 Sep 2014 61 / 72



Probabilistic Opponent Modelling (Rienstra et al,
IJCAI-13)

B = {a, b, c, d}
u = µ

(d,P )
g

E = {F1, F2}
P (F1) = 0.3, P (F2) = 0.7

B = {a, c, d}
u = µ

(d,O)
g

E = {G1}
P (G1) = 1

B = {b, c, d}
u = µ

(d,O)
g

E = {G2}
P (G2) = 1

B = {c, d}
u = µ

(d,P )
g

. . .

B = {c, d}
u = µ

(d,P )
g

. . .

F1

F2

G1

G2

E

a

b

c d

We can reason about different depths of opponent models - “I
believe that you believe that I believe . . . ”.
Better to reason about the likelihood of an opponent knowing an
argument than the likelihood of an opponent’s entire model. Does
opponent agree with a specific argument?
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Probabilistic Opponent Modelling

1: maxEU = u(π)
2: bestMoves = ∅
3: for all M ∈ legalmoves(π) do
4: eu = 0
5: for all E ∈ E do
6: (oUtil ,oMoves) = (moveu((π,M),E))
7: for all M ′ ∈ oMoves do
8: (nUtil ,nMoves) = moveu((π,M,M ′), (B,u, E ,P))
9: eu = eu + nUtil ∗ P(E ′) ∗ 1

|oMoves|
10: end for
11: end for
12: if eu > maxEU then
13: bestMoves = ∅
14: end if
15: if eu ≥ maxEU then
16: bestMoves = bestMoves ∪ {M}
17: maxEU = eu
18: end if
19: end for
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Arguing about uncertainty

We’ve focused on arguing with probabilities - what conclusions
can we draw from uncertain information.
We have already seen that there are sometimes several ways of
associating probabilities with arguments; how do we pick the right
set?

Information from a UAV indicates the presence of hostile forces with
a likelihood of XX%
Information from ground forces indicates hostile forces with a
likelihood of YY%
What is the likelihood of hostile forces?

Bayes’ Rule; averaging; weighted averaging; maximum entropy;
. . .
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Argument Schemes about unertainty (Tang et
al. ArgMAS-13

Tang’s work is rooted in Dempster-Shafer theory.
An argument is a conclusion with evidence for it

A1 = 〈p, {¬p : 0.3,p ∧ q : 0.6,q : 0.1}〉

We can compute belief, disbelief and uncertainty values:

b(p) = m(p ∧ q) = 0.6
d(p) = m(¬p) = 0.3
u(p) = m(q) = 0.1
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Argument Schemes about unertainty (Tang et
al. ArgMAS-13

Tang’s work is rooted in Dempster-Shafer theory.
An argument is a conclusion with evidence for it

A2 = 〈p → q, {¬p ∧ q : 0.5,¬q : 0.3,¬p : 0.2}〉

We can compute belief, disbelief and uncertainty values:

b(p → q) = m(¬p ∧ q) = 0.5
d(p → q) = 0
u(p → q) = m(p) + m(¬q) = 0.5
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Argument Schemes

We can view rules of combination as argument schemes, taking in
evidence arguments
And outputting another evidence argument.
Critical questions lead to the acceptance or rejection of applying
the scheme.
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Example: Dempster’s rule of combination

Combination function:

m(E1 ⊗D E2,P) =
ΣP=B∧Cm(E1,B)m(E2,C)

1− ΣB∧C=⊥m(E1,B)m(E2,C)

Critical questions
1 Is the evidence for consonant, consistent or arbitrary focal subsets

of the frame of discernment?
2 Is each piece of evidence equally reliable?
3 Is each piece of evidence independent?
4 Should conflict between evidence be ignored in the mass

assignments that result from combination?
5 Is there a restricted stochastic process behind the evidence which

can be exploited to obtain a more accurate combination?
6 Is the evidence all informative (i.e. no Ei in the premises contains

the totally uncertain focal element Ω with m(Ei ,Ω) > 0 ) ?
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Scheme example 2: Mixing-or-average rule

Rule pattern:

δ =
〈h1,E1〉, ..., 〈hm,Em〉

〈h,E〉
Combination function:

m(E1 ⊗M ...⊗M En,P) =
1
n

Σn
i=1wi ·m(Ei ,P)

where P ∈ E1 ∪ E2 ∪ ... ∪ En and wi is the weight assigned to
reliability of the corresponding piece of evidence.
Critical questions

1 Do the assigned weights not reflect the nature of the input
evidence?

2 Is there a restricted stochastic process behind the evidence which
can be exploited to obtain a more accurate combination?
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Argumentation driven by the Dempster-Shafer
schemes
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What have we done?

Reasoned about the likelihood of arguments in the presence of
uncertainty

Uncertainty about knowledge of argument; uncertainty about
justification status: Pr(E)AF.
Uncertainty about belief (in base validity) of an argument:
Epistemic extensions.
Via epistemic extensions, we can constrain what “reasonable”
beliefs are.

Maximised the likelihood of persuasion of others within a dialogue.
Reasoned about how arguments should be combined in the
presence of uncertainty.
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Some Open Issues

What is the relationship between PrAFs and the Epistemic
Extension interpretation?

What happens if we feed the output of the former into the latter?
Can we obtain constraints over “reasonable” PrAF likelihoods?

How to combine uncertainty with imprecise/fuzzy information
(Dondio)
Older approaches take a BN type approach, with arguments
weakening each other. To move to a Dung type framework, better
definitions of conflict between uncertain information is required
(p(a) = 0 conflicts with p(a) = 1); does p(a) = 0.3999 conflict with
P(a) = 0.4).
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